Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 11(11)2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-38001969

RESUMO

The ribosome is a macromolecular complex composed of RNA and proteins that interact through an integrated and interconnected network to preserve its ancient core activities. In this review, we emphasize the pivotal role played by RNA-binding proteins as a driving force in the evolution of the current form of the ribosome, underscoring their importance in ensuring accurate protein synthesis. This category of proteins includes both ribosomal proteins and ribosome biogenesis factors. Impairment of their RNA-binding activity can also lead to ribosomopathies, which is a group of disorders characterized by defects in ribosome biogenesis that are detrimental to protein synthesis and cellular homeostasis. A comprehensive understanding of these intricate processes is essential for elucidating the mechanisms underlying the resulting diseases and advancing potential therapeutic interventions.

2.
Exp Dermatol ; 32(6): 787-798, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36789506

RESUMO

Hailey-Hailey disease (HHD) is a rare autosomal dominantly inherited disorder caused by mutations in the ATP2C1 gene that encodes an adenosine triphosphate (ATP)-powered calcium channel pump. HHD is characterized by impaired epidermal cell-to-cell adhesion and defective keratinocyte growth/differentiation. The mechanism by which mutant ATP2C1 causes HHD is unknown and current treatments for affected individuals do not address the underlying defects and are ineffective. Notch signalling is a direct determinant of keratinocyte growth and differentiation. We found that loss of ATP2C1 leads to impaired Notch1 signalling, thus deregulation of the Notch signalling response is therefore likely to contribute to HHD manifestation. NOTCH1 is a transmembrane receptor and upon ligand binding, the intracellular domain (NICD) translocates to the nucleus activating its target genes. In the context of HHD, we found that loss of ATP2C1 function promotes upregulation of the active NOTCH1 protein (NICD-Val1744). Here, deeply exploring this aspect, we observed that NOTCH1 activation is not associated with the transcriptional enhancement of its targets. Moreover, in agreement with these results, we found a cytoplasmic localization of NICD-Val1744. We have also observed that ATP2C1-loss is associated with the degradation of NICD-Val1744 through the lysosomal/proteasome pathway. These results show that ATP2C1-loss could promote a mechanism by which NOTCH1 is endocytosed and degraded by the cell membrane. The deregulation of this phenomenon, finely regulated in physiological conditions, could in HHD lead to the deregulation of NOTCH1 with alteration of skin homeostasis and disease manifestation.


Assuntos
Pênfigo Familiar Benigno , Humanos , Pênfigo Familiar Benigno/genética , Pênfigo Familiar Benigno/metabolismo , Pele/metabolismo , Queratinócitos/metabolismo , Mutação , Epiderme/metabolismo , ATPases Transportadoras de Cálcio/genética , ATPases Transportadoras de Cálcio/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo
3.
Front Microbiol ; 12: 631297, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841359

RESUMO

The translation factor IF6 is a protein of about 25 kDa shared by the Archaea and the Eukarya but absent in Bacteria. It acts as a ribosome anti-association factor that binds to the large subunit preventing the joining to the small subunit. It must be released from the large ribosomal subunit to permit its entry to the translation cycle. In Eukarya, this process occurs by the coordinated action of the GTPase Efl1 and the docking protein SBDS. Archaea do not possess a homolog of the former factor while they have a homolog of SBDS. In the past, we have determined the function and ribosomal localization of the archaeal (Sulfolobus solfataricus) IF6 homolog (aIF6) highlighting its similarity to the eukaryotic counterpart. Here, we analyzed the mechanism of aIF6 release from the large ribosomal subunit. We found that, similarly to the Eukarya, the detachment of aIF6 from the 50S subunit requires a GTPase activity which involves the archaeal elongation factor 2 (aEF-2). However, the release of aIF6 from the 50S subunits does not require the archaeal homolog of SBDS, being on the contrary inhibited by its presence. Molecular modeling, using published structural data of closely related homologous proteins, elucidated the mechanistic interplay between the aIF6, aSBDS, and aEF2 on the ribosome surface. The results suggest that a conformational rearrangement of aEF2, upon GTP hydrolysis, promotes aIF6 ejection. On the other hand, aSBDS and aEF2 share the same binding site, whose occupation by SBDS prevents aEF2 binding, thereby inhibiting aIF6 release.

4.
Int J Mol Sci ; 21(13)2020 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-32605139

RESUMO

The eukaryotic translation initiation factor 5A (eIF5A) is an essential protein for the viability of the cells whose proposed function is to prevent the stalling of the ribosomes during translation elongation. eIF5A activity requires a unique and functionally essential post-translational modification, the change of a lysine to hypusine. eIF5A is recognized as a promoter of cell proliferation, but it has also been suggested to induce apoptosis. To date, the precise molecular mechanism through which eIF5A affects these processes remains elusive. In the present study, we explored whether eIF5A is involved in controlling the stress-induced expression of the key cellular regulator p53. Our results show that treatment of HCT-116 colon cancer cells with the deoxyhypusine (DHS) inhibitor N1-guanyl-1,7-diamineheptane (GC7) caused both inhibition of eIF5A hypusination and a significant reduction of p53 expression in UV-treated cells, and that eIF5A controls p53 expression at the level of protein synthesis. Furthermore, we show that treatment with GC7 followed by UV-induced stress counteracts the pro-apoptotic process triggered by p53 up-regulation. More in general, the importance of eIF5A in the cellular stress response is illustrated by the finding that exposure to UV light promotes the binding of eIF5A to the ribosomes, whereas UV treatment complemented by the presence of GC7 inhibits such binding, allowing a decrease of de novo synthesis of p53 protein.


Assuntos
Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica , Lisina/análogos & derivados , Fatores de Iniciação de Peptídeos/química , Processamento de Proteína Pós-Traducional , Proteínas de Ligação a RNA/química , Ribossomos/metabolismo , Proteína Supressora de Tumor p53/genética , Apoptose , Proliferação de Células , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Humanos , Lisina/química , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , Biossíntese de Proteínas , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/metabolismo
5.
J Biol Chem ; 294(47): 17941-17950, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31597699

RESUMO

Notch signaling plays a complex role in carcinogenesis, and its signaling pathway has both tumor suppressor and oncogenic components. To identify regulators that might control this dual activity of NOTCH1, we screened a chemical library targeting kinases and identified Polo-like kinase 1 (PLK1) as one of the kinases involved in arsenite-induced NOTCH1 down-modulation. As PLK1 activity drives mitotic entry but also is inhibited after DNA damage, we investigated the PLK1-NOTCH1 interplay in the G2 phase of the cell cycle and in response to DNA damage. Here, we found that PLK1 regulates NOTCH1 expression at G2/M transition. However, when cells in G2 phase are challenged with DNA damage, PLK1 is inhibited to prevent entry into mitosis. Interestingly, we found that the interaction between NOTCH1 and PLK1 is functionally important during the DNA damage response, as we found that whereas PLK1 activity is inhibited, NOTCH1 expression is maintained during DNA damage response. During genotoxic stress, cellular transformation requires that promitotic activity must override DNA damage checkpoint signaling to drive proliferation. Interestingly, we found that arsenite-induced genotoxic stress causes a PLK1-dependent signaling response that antagonizes the involvement of NOTCH1 in the DNA damage checkpoint. Taken together, our data provide evidence that Notch signaling is altered but not abolished in SCC cells. Thus, it is also important to recognize that Notch plasticity might be modulated and could represent a key determinant to switch on/off either the oncogenic or tumor suppressor function of Notch signaling in a single type of tumor.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Mitose , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptor Notch1/metabolismo , Apoptose/efeitos dos fármacos , Arsenitos/toxicidade , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/antagonistas & inibidores , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Regulação para Baixo/efeitos dos fármacos , Fase G2/efeitos dos fármacos , Humanos , Mediadores da Inflamação/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Mitose/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteólise/efeitos dos fármacos , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Especificidade por Substrato/efeitos dos fármacos
6.
Archaea ; 2019: 9848253, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30886540

RESUMO

A system is described which permits the efficient synthesis of proteins in vitro at high temperature. It is based on the use of an unfractionated cell lysate (S30) from Sulfolobus solfataricus previously well characterized in our laboratory for translation of pretranscribed mRNAs, and now adapted to perform coupled transcription and translation. The essential element in this expression system is a strong promoter derived from the S. solfataricus 16S/23S rRNA-encoding gene, from which specific mRNAs may be transcribed with high efficiency. The synthesis of two different proteins is reported, including the S. solfataricus DNA-alkylguanine-DNA-alkyl-transferase protein (SsOGT), which is shown to be successfully labeled with appropriate fluorescent substrates and visualized in cell extracts. The simplicity of the experimental procedure and specific activity of the proteins offer a number of possibilities for the study of structure-function relationships of proteins.


Assuntos
Misturas Complexas/metabolismo , Biossíntese de Proteínas , Sulfolobus solfataricus/enzimologia , Transcrição Gênica , Sistema Livre de Células , DNA Arqueal/genética , Temperatura Alta , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 23S/genética
7.
J Transl Med ; 17(1): 20, 2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30634982

RESUMO

BACKGROUND: Melanoma cells develop adaptive responses in order to cope with particular conditions of tumor microenvironment, characterized by stress conditions and deregulated proliferation. Recently, the interplay between the stress response and the gene expression programs leading to metastatic spread has been reported. METHODS: We evaluated levels and localization of eIF2α/peIF2α in V600BRAF and wtBRAF metastatic melanoma cell lines by means of western blot and confocal microscopy analyses. Furthermore, we performed a sequence analyses and structure and dynamics studies of eIF2α protein to reveal the role of eIF2α and its correlations in different pathways involved in the invasive phase of melanoma. RESULTS: We found peIF2α both in cytoplasm and nucleus. Nuclear localization was more represented in V600BRAF melanoma cell lines. Our studies on eIF2α protein sequence indicated the presence of a predicted bipartite NLS as well as a nuclear export signal NES and an S1 domain, typical of RNA interacting proteins. Furthermore, we found high levels of transcription factor EB (TFEB), a component of the MiT/TFE family, and low ß-catenin levels in V600BRAF cells. CONCLUSIONS: Based on our results, we suggest that peIF2α nuclear localization can be crucial in ER stress response and in driving the metastatic spread of melanoma, through lysosomal signaling and Wnt/ß-catenin pathway. In conclusion, this is the first evidence of nuclear localization of peIF2α, representing a possible target for future therapeutic approaches for metastatic melanoma.


Assuntos
Fator de Iniciação 2 em Eucariotos/metabolismo , Melanoma/metabolismo , Biossíntese de Proteínas , Neoplasias Cutâneas/metabolismo , Sequência de Aminoácidos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Linhagem Celular Tumoral , Fator de Iniciação 2 em Eucariotos/química , Humanos , Fosforilação , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , beta Catenina/metabolismo
8.
Proteome Sci ; 15: 18, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28785172

RESUMO

BACKGROUND: Changes in iron metabolism frequently accompany HIV-1 infection. However, while many clinical and in vitro studies report iron overload exacerbates the development of infection, many others have found no correlation. Therefore, the multi-faceted role of iron in HIV-1 infection remains enigmatic. METHODS: RT-qPCR targeting the LTR region, gag, Tat and Rev were performed to measure the levels of viral RNAs in response to iron overload. Spike-in SILAC proteomics comparing i) iron-treated, ii) HIV-1-infected and iii) HIV-1-infected/iron treated T lymphocytes was performed to define modifications in the host cell proteome. Data from quantitative proteomics were integrated with the HIV-1 Human Interaction Database for assessing any viral cofactors modulated by iron overload in infected T lymphocytes. RESULTS: Here, we demonstrate that the iron overload down-regulates HIV-1 gene expression by decreasing the levels of viral RNAs. In addition, we found that iron overload modulates the expression of many viral cofactors. Among them, the downregulation of the REV cofactor eIF5A may correlate with the iron-induced inhibition of HIV-1 gene expression. Therefore, we demonstrated that eiF5A downregulation by shRNA resulted in a significant decrease of Nef levels, thus hampering HIV-1 replication. CONCLUSIONS: Our study indicates that HIV-1 cofactors influenced by iron metabolism represent potential targets for antiretroviral therapy and suggests eIF5A as a selective target for drug development.

9.
BMC Cancer ; 15: 131, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25886394

RESUMO

BACKGROUND: Eukaryotic Initiation factor 6 (eIF6) is a peculiar translation initiation factor that binds to the large 60S ribosomal subunits, controlling translation initiation and participating in ribosome biogenesis. In the past, knowledge about the mechanisms adopted by the cells for controlling protein synthesis by extracellular stimuli has focused on two translation initiation factors (eIF4E and eIF2), however, recent data suggest eIF6 as a newcomer in the control of downstream of signal transduction pathways. eIF6 is over-expressed in tumors and its decreased expression renders cells less prone to tumor growth. A previous work from our laboratory has disclosed that over-expression of eIF6 in transformed cell lines markedly increased cell migration and invasion. METHODS: Here, we performed a quantitative proteomic analysis of membrane-associated proteins in A2780 ovarian cancer cells over-expressing eIF6. Differentially expressed proteins upon eIF6 overproduction were further investigated in silico by Ingenuity Pathway Analysis (IPA). RT-qPCR and Western blot were performed in order to validate the proteomic data. Furthermore, the effects of a potent and selective inhibitor ML-141 in A2780 cells were evaluated using transwell migration assay. Finally, we explored the effects of eIF6 over-expression on WM793 primary melanoma cell lines. RESULTS: We demonstrated that: (i) the genes up-regulated upon eIF6 overproduction mapped to a functional network corresponding to cellular movements in a highly significant way; (ii) cdc42 plays a pivotal role as an effector of enhanced migratory phenotype induced upon eIF6 over-expression; (iii) the variations in abundance observed for cdc42 protein occur at a post-transcriptional level; (iv) the increased cell migration/invasion upon eIF6 over-expression was generalizable to other cell line models. CONCLUSIONS: Collectively, our data confirm and further extend the role of eIF6 in enhancing cell migration/invasion. We show that a number of membrane-associated proteins indeed vary in abundance upon eIF6 over-expression, and that the up-regulated proteins can be located within a functional network controlling cell motility and tumor metastasis. Full understanding of the role eIF6 plays in the metastatic process is important, also in view of the fact that this factor is a potentially druggable target to be exploited for new anti-cancer therapies.


Assuntos
Fatores de Iniciação em Eucariotos/biossíntese , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana/biossíntese , Invasividade Neoplásica , Movimento Celular/fisiologia , Feminino , Humanos , Invasividade Neoplásica/patologia
10.
Biochem J ; 462(2): 373-84, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24825021

RESUMO

MBF1 (multi-protein bridging factor 1) is a protein containing a conserved HTH (helix-turn-helix) domain in both eukaryotes and archaea. Eukaryotic MBF1 has been reported to function as a transcriptional co-activator that physically bridges transcription regulators with the core transcription initiation machinery of RNA polymerase II. In addition, MBF1 has been found to be associated with polyadenylated mRNA in yeast as well as in mammalian cells. aMBF1 (archaeal MBF1) is very well conserved among most archaeal lineages; however, its function has so far remained elusive. To address this, we have conducted a molecular characterization of this aMBF1. Affinity purification of interacting proteins indicates that aMBF1 binds to ribosomal subunits. On sucrose density gradients, aMBF1 co-fractionates with free 30S ribosomal subunits as well as with 70S ribosomes engaged in translation. Binding of aMBF1 to ribosomes does not inhibit translation. Using NMR spectroscopy, we show that aMBF1 contains a long intrinsically disordered linker connecting the predicted N-terminal zinc-ribbon domain with the C-terminal HTH domain. The HTH domain, which is conserved in all archaeal and eukaryotic MBF1 homologues, is directly involved in the association of aMBF1 with ribosomes. The disordered linker of the ribosome-bound aMBF1 provides the N-terminal domain with high flexibility in the aMBF1-ribosome complex. Overall, our findings suggest a role for aMBF1 in the archaeal translation process.


Assuntos
Proteínas Arqueais/metabolismo , Subunidades Ribossômicas Menores de Arqueas/metabolismo , Sulfolobus solfataricus/metabolismo , Transativadores/metabolismo , Motivos de Aminoácidos , Proteínas Arqueais/química , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Subunidades Ribossômicas Menores de Arqueas/química , Transativadores/química
11.
Biochem Soc Trans ; 41(1): 350-5, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23356310

RESUMO

The formation of the translation initiation complex represents the rate-limiting step in protein synthesis. Translation initiation in the crenarchaeon Sulfolobus solfataricus depends on several translation IFs (initiation factors), some of which have eukaryal but no bacterial counterparts. In the present paper, we review the current knowledge of the structure, function and evolution of the IFs in S. solfataricus in the context of eukaryotic and bacterial orthologues. Despite similarities between eukaryotic and S. solfataricus IFs, the sequence of events in translation initiation in S. solfataricus follows the bacterial mode.


Assuntos
Biossíntese de Proteínas , Sulfolobus solfataricus/genética , Evolução Molecular , Fatores de Iniciação de Peptídeos/genética
12.
PLoS One ; 7(2): e32047, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22348144

RESUMO

A growing body of evidence indicates that protein factors controlling translation play an important role in tumorigenesis. The protein known as eIF6 is a ribosome anti-association factor that has been implicated in translational initiation and in ribosome synthesis. Over-expression of eIF6 is observed in many natural tumours, and causes developmental and differentiation defects in certain animal models. Here we show that the transcription of the gene encoding eIF6 is modulated by the receptor Notch-1, a protein involved in embryonic development and cell differentiation, as well as in many neoplasms. Inhibition of Notch-1 signalling by γ-secretase inhibitors slowed down cell-cycle progression and reduced the amount of eIF6 in lymphoblastoid and ovarian cancer cell lines. Cultured ovarian cancer cell lines engineered to stably over-expressing eIF6 did not show significant changes in proliferation rate, but displayed an enhanced motility and invasive capacity. Inhibition of Notch-1 signalling in the cells over-expressing eIF6 was effective in slowing down the cell cycle, but did not reduce cell migration and invasion. On the whole, the results suggest that eIF6 is one of the downstream effectors of Notch-1 in the pathway that controls cell motility and invasiveness.


Assuntos
Movimento Celular , Invasividade Neoplásica , Fatores de Iniciação de Peptídeos/fisiologia , Receptor Notch1/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Ovarianas/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Transdução de Sinais
13.
J Bacteriol ; 193(11): 2861-7, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21478358

RESUMO

HflX GTPases are found in all three domains of life, the Bacteria, Archaea, and Eukarya. HflX from Escherichia coli has been shown to bind to the 50S ribosomal subunit in a nucleotide-dependent manner, and this interaction strongly stimulates its GTPase activity. We recently determined the structure of an HflX ortholog from the archaeon Sulfolobus solfataricus (SsoHflX). It revealed the presence of a novel HflX domain that might function in RNA binding and is linked to a canonical G domain. This domain arrangement is common to all archaeal, bacterial, and eukaryotic HflX GTPases. This paper shows that the archaeal SsoHflX, like its bacterial orthologs, binds to the 50S ribosomal subunit. This interaction does not depend on the presence of guanine nucleotides. The HflX domain is sufficient for ribosome interaction. Binding appears to be restricted to free 50S ribosomal subunits and does not occur with 70S ribosomes engaged in translation. The fingerprint (1)H-(15)N heteronuclear correlation nuclear magnetic resonance (NMR) spectrum of SsoHflX reveals a large number of well-resolved resonances that are broadened upon binding to the 50S ribosomal subunit. The GTPase activity of SsoHflX is stimulated by crude fractions of 50S ribosomal subunits, but this effect is lost with further high-salt purification of the 50S ribosomal subunits, suggesting that the stimulation depends on an extrinsic factor bound to the 50S ribosomal subunit. Our results reveal common properties but also marked differences between archaeal and bacterial HflX proteins.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Nucleotídeos/metabolismo , Subunidades Ribossômicas Maiores de Arqueas/metabolismo , Sulfolobus solfataricus/enzimologia , Espectroscopia de Ressonância Magnética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas
14.
Biochem Soc Trans ; 39(1): 89-93, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21265752

RESUMO

Initiation is a critical step in translation, during which the ribosome lands on the start codon and sets the correct reading frame for mRNA decoding. The rate and efficiency of translation are largely determined by initiation, which is therefore the preferred target of translation regulation mechanisms. Initiation has incurred an extensive evolutionary divergence among the primary domains of cell descent. The Archaea, albeit prokaryotes, have an initiation mechanism and apparatus more complex than those of the Bacteria; the molecular details of archaeal initiation are just beginning to be unravelled. The most notable aspects of archaeal initiation are the presence of two, perhaps three, distinct mechanisms for mRNA-ribosome interaction and the presence of a relatively large set of IFs (initiation factors), several of which are shared exclusively with the Eukarya. Among these, the protein termed a/eIF2 (archaeal/eukaryotic IF2) and aIF6 (archaeal IF6) are of special interest, since they appear to play key regulatory roles in the Eukarya. Studies of the function of these factors in Archaea have uncovered new features that will help to elucidate their conserved and domain-specific functions.


Assuntos
Archaea/metabolismo , Biossíntese de Proteínas , Archaea/genética , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Fatores de Iniciação de Peptídeos/química , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Ribossomos/metabolismo
15.
J Proteome Res ; 9(5): 2496-507, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20192274

RESUMO

Sequenced genomes often reveal interrupted coding sequences that complicate the annotation process and the subsequent functional characterization of the genes. In the past, interrupted genes were generally considered to be the result of sequencing errors or pseudogenes, that is, gene remnants with little or no biological importance. However, recent lines of evidence support the hypothesis that these coding sequences can be functional; thus, it is crucial to understand whether interrupted genes are expressed in vivo. We addressed this issue by experimentally demonstrating the existence of functional disrupted genes in archaeal genomes. We discovered previously unknown disrupted genes that have interrupted homologues in distantly related species of archaea. The combination of a RT-PCR strategy with shotgun proteomics demonstrates that interrupted genes in the archaeon Sulfolobus solfataricus are expressed in vivo. In addition, the sequence of the peptides determined by LCMSMS and experiments of in vitro translation allows us to identify a gene expressed by programmed -1 frameshifting. Our findings will enable an accurate reinterpretation of archaeal interrupted genes shedding light on their function and on archaeal genome evolution.


Assuntos
Proteínas Arqueais/química , Genes Arqueais , Ensaios de Triagem em Larga Escala/métodos , Proteoma/análise , Proteômica/métodos , Sulfolobus solfataricus/genética , Sequência de Aminoácidos , Proteínas Arqueais/genética , Sequência de Bases , Cromatografia Líquida , Dados de Sequência Molecular , Mapeamento de Peptídeos , Pseudogenes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas em Tandem , Transcetolase/química , Transcetolase/genética
16.
Res Microbiol ; 160(7): 493-501, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19576983

RESUMO

Initiation of protein synthesis, entailing ribosomal recognition of the mRNA start codon and setting of the correct reading frame, is the rate-limiting step in translation and the main target of translation regulation in all modern cells. As efficient selection of the translation start site is vital for survival of extant cells, a mechanism for ensuring this may already have been in existence in the last universal common ancestor of present-day cells. This article reviews known features of the molecular machinery for initiation in the primary domains of life, Bacteria, Archaea and Eukarya, and attempts to identify conserved features that may be useful for reconstructing a model of the ancestral initiation apparatus.


Assuntos
Archaea/fisiologia , Fenômenos Fisiológicos Bacterianos , Eucariotos/fisiologia , Evolução Molecular , Iniciação Traducional da Cadeia Peptídica , Modelos Biológicos , Modelos Moleculares
17.
Nucleic Acids Res ; 37(1): 256-67, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19036786

RESUMO

The translation factor IF6 is shared by the Archaea and the Eukarya, but is not found in Bacteria. The properties of eukaryal IF6 (eIF6) have been extensively studied, but remain somewhat elusive. eIF6 behaves as a ribosome-anti-association factor and is involved in miRNA-mediated gene silencing; however, it also seems to participate in ribosome synthesis and export. Here we have determined the function and ribosomal localization of the archaeal (Sulfolobus solfataricus) IF6 homologue (aIF6). We find that aIF6 binds specifically to the 50S ribosomal subunits, hindering the formation of 70S ribosomes and strongly inhibiting translation. aIF6 is uniformly expressed along the cell cycle, but it is upregulated following both cold- and heat shock. The aIF6 ribosomal binding site lies in the middle of the 30-S interacting surface of the 50S subunit, including a number of critical RNA and protein determinants involved in subunit association. The data suggest that the IF6 protein evolved in the archaeal-eukaryal lineage to modulate translational efficiency under unfavourable environmental conditions, perhaps acquiring additional functions during eukaryotic evolution.


Assuntos
Proteínas Arqueais/metabolismo , Fatores de Iniciação em Procariotos/metabolismo , Biossíntese de Proteínas , Subunidades Ribossômicas Maiores de Arqueas/metabolismo , Sulfolobus solfataricus/genética , Proteínas Arqueais/análise , Proteínas Arqueais/química , Sequência de Bases , Sítios de Ligação , Ciclo Celular , Clonagem Molecular , Fatores de Iniciação em Eucariotos/química , Modelos Moleculares , Dados de Sequência Molecular , Fatores de Iniciação em Procariotos/análise , Fatores de Iniciação em Procariotos/química , RNA Ribossômico 23S/química , RNA Ribossômico 23S/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Sulfolobus solfataricus/metabolismo
18.
Methods Enzymol ; 430: 79-109, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17913636

RESUMO

Initiation is the step of translation that has incurred the greatest evolutionary divergence. In silico and experimental studies have shown that archaeal translation initiation resembles neither the bacterial nor the eukaryotic paradigm, but shares features with both. The structure of mRNA in archaea is similar to the bacterial one, although the protein factors that assist translational initiation are more numerous than in bacteria and are homologous to eukaryotic proteins. This chapter describes a number of techniques that can be used for in vitro studies of archaeal translation and translational initiation, using as a model system the thermophilic crenarcheon Sulfolobus solfataricus, growing optimally at about 80 degrees in an acidic environment.


Assuntos
Biossíntese de Proteínas , Sulfolobus solfataricus , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Substâncias Macromoleculares , Metionina/metabolismo , Fatores de Iniciação de Peptídeos/isolamento & purificação , Fatores de Iniciação de Peptídeos/metabolismo , RNA Arqueal/metabolismo , RNA Mensageiro/metabolismo , RNA de Transferência/isolamento & purificação , RNA de Transferência/metabolismo , RNA de Transferência de Metionina/isolamento & purificação , RNA de Transferência de Metionina/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Sulfolobus solfataricus/genética , Sulfolobus solfataricus/metabolismo
19.
Mol Microbiol ; 65(3): 700-13, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17608795

RESUMO

The protein IF2/eIF5B is one of the few translation initiation factors shared by all three primary domains of life (bacteria, archaea, eukarya). Despite its phylogenetic conservation, the factor is known to present marked functional divergences in the bacteria and the eukarya. In this work, the function in translation of the archaeal homologue (aIF2/5B) has been analysed in detail for the first time using a variety of in vitro assays. The results revealed that the protein is a ribosome-dependent GTPase which strongly stimulates the binding of initiator tRNA to the ribosomes even in the absence of other factors. In agreement with this finding, aIF2/5B enhances the translation of both leadered and leaderless mRNAs when expressed in a cell-free protein-synthesizing system. Moreover, the degree of functional conservation of the IF2-like factors in the archaeal and bacterial lineages was investigated by analysing the behaviour of 'chimeric' proteins produced by swapping domains between the Sulfolobus solfataricus aIF2/5B factor and the IF2 protein of the thermophilic bacterium Bacillus stearothermophilus. Beside evidencing similarities and differences between the archaeal and bacterial factors, these experiments have provided insight into the common role played by the IF2/5B proteins in all extant cells.


Assuntos
Fatores de Iniciação de Peptídeos/metabolismo , Biossíntese de Proteínas , Sulfolobus solfataricus/metabolismo , Regiões 5' não Traduzidas/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Clonagem Molecular , Sequência Conservada , GTP Fosfo-Hidrolases/metabolismo , Expressão Gênica , Genes Arqueais , Hidrólise , Iniciação Traducional da Cadeia Peptídica , Fatores de Iniciação de Peptídeos/química , Fatores de Iniciação de Peptídeos/isolamento & purificação , Ligação Proteica , Estrutura Secundária de Proteína , RNA de Transferência de Metionina/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Ribossomos/metabolismo , Sulfolobus solfataricus/genética
20.
Nucleic Acids Res ; 34(15): 4258-68, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16920738

RESUMO

The standard rules of genetic translational decoding are altered in specific genes by different events that are globally termed recoding. In Archaea recoding has been unequivocally determined so far only for termination codon readthrough events. We study here the mechanism of expression of a gene encoding for a alpha-l-fucosidase from the archaeon Sulfolobus solfataricus (fucA1), which is split in two open reading frames separated by a -1 frameshifting. The expression in Escherichia coli of the wild-type split gene led to the production by frameshifting of full-length polypeptides with an efficiency of 5%. Mutations in the regulatory site where the shift takes place demonstrate that the expression in vivo occurs in a programmed way. Further, we identify a full-length product of fucA1 in S.solfataricus extracts, which translate this gene in vitro by following programmed -1 frameshifting. This is the first experimental demonstration that this kind of recoding is present in Archaea.


Assuntos
Archaea/genética , Mudança da Fase de Leitura do Gene Ribossômico , Regulação da Expressão Gênica em Archaea/fisiologia , alfa-L-Fucosidase/genética , Escherichia coli/genética , Mutação da Fase de Leitura , Sulfolobus solfataricus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...